由于检查时不需接触工件又不用耦合介质,所以可进行高温下的检测。由于探头可伸入到远处作业,所以可对工件的狭窄区域及深孔壁(包括管壁)等进行检测。
由于采用电信号显示,所以可存储、再现及进行数据比较和处理。
涡流探伤的对象必须是导电材料,且由于电磁感应的原因,只适用于检测金属表面缺陷,不适用检测金属材料深层的内部缺陷。
无损检测形式磁粉检测(MT)磁粉检测原理:铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。适用性和局限性:磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹)目视难以看出的不连续性;也可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测,可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。但磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。光纤传感技术
光纤传感技术是利用光纤对某些特定的物理量敏感的特性,将外界物理量转换成可以直接测量的信号的技术。从70年代中期至今,光纤传感技术经过20多年时间的飞速发展,已经有了很大的进步,已成功研制百余种光纤传感器。它已涉及到、航天航空、工矿企业、能源环保、生物、计量测试、自动控制和家用电器等各种领域。将光纤传感器应用于桥梁测量中,可实现对桥梁钢索的索力及预应力连续混凝土梁内部应力、应变特性的测量和监测,构成所谓的光纤智能桥梁。光纤传感器与传统的传感器相比主要差别在于:传统的传感器是以应变-电量为基础,以电信号为转换及传输的载体,用导线传输电信号,因而使用时受到环境的限制,如环境湿度太大可能引起短路,特别是高温和、环境中易引起火灾等。光纤应变传感器是以光信号为变换和传输的载体,利用光纤传输信号,它的优点是:光纤是由石英玻璃制成的,是一种介质、绝缘体,且耐高压、耐腐蚀,能在的环境下可靠运行;光纤为无源器件,对被测对象不产生影响;光纤体积小重量轻可做成任意形状的传感器阵列;光纤传感器的载体是光。我国从90年代就开始了对光纤传感技术的应用研究,从而把光纤传感技术运用到桥梁检测中,给桥梁健康监测和安全评价注入了新的活力。缺点: 因其价格昂贵, 针对我国的国情该项技术在我国的桥梁检测中还难以推广。
检测方法更加多样化以适应不同部件、不同材料的检测需求。超声(包括相控和TOFD)、射线(包括数字射线成像、CT)、涡流(包括脉冲涡流、远场涡流)、磁学方法(磁粉、漏磁场、磁记忆)和渗透这五大常规检测方法都有进一步发展并已派生出许多新的检测方法和新的检测理念。
声发射技术、红外热成像、微波检测和激光干涉技术的应用也日趋成熟并成为新的常规检测方法。此外,ACFM(交流场测量)、机器视觉检测技术、中子射线成像检测等也有了应用。