传统壁流式DPF孔是方形孔结构,并交叉堵孔,迫使气流流经过滤壁面,颗粒集在壁内部孔表面上(深层过滤)和壁表面上,形成一层碳烟过滤层。当碳烟负载量较多时,表层过滤将会是影响DPF压力损失的主要因素,因而增加DPF的有效过滤面积,在同等的碳烟量情况下,累积在DPF过滤壁面上的碳烟厚度将减小;另外,提高DPF入口的开孔率,能有效提高DPF的过滤容积,加强DPF的灰分储存能力,延长清灰里程。
Boger等研究了GPF中炭烟的氧化过程,并进行了道路试验以确定炭烟氧化速率。该试验发现,在城市和高速公路行驶过程中,即使排气温度低于400℃,GPF通常也会被动再生。同时,在驾驶过程中,发动机断油是相当频繁的。由于在驾驶过程中没有研究炭烟的积累或氧化过程,GPF的过滤效率会如何变化并不清楚。Chan等进行了2轮研究,在对量产车辆上的GPF进行改装后,在转毂台架上试验研究了其过滤效率。
上述研究表明,GPF是被动再生的,目前还不清楚再生的频率,以及炭烟在GPF上的累积在多大程度上影响了GPF的过滤效率。有研究假设,因为再生如此频繁,发动机排出的炭烟量足够小,以至于在GPF中的炭烟层对过滤效率的影响很小。然而,如果再生次数较少,或者如果炭烟累积率较高,则可以预计GPF效率将随着炭烟在过滤器中的累积而增加。