推广 热搜: 收购ACF  石英加热管,  800  T型槽试验平台  求购ACF  深圳回收ACF  回收ACF  T型槽装配平台  求购日立ACF  T型槽地梁 

伴随矩阵 、伴随矩阵是什么

   日期:2023-04-10     浏览:29    评论:0    
核心提示:三阶矩阵求伴随矩阵用代数余子式或者公式A的伴随矩阵=|A|*A^-1A^*=1    -2     70     1    -20     0     1首先介绍 “代数余子式” 这个概念:设 D 是

三阶矩阵求伴随矩阵

用代数余子式或者公式A的伴随矩阵=|A|*A^-1A^*=1    -2     70     1    -20     0     1首先介绍 “代数余子式” 这个概念:

设 D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中

把aij所在的第i行和第j列划去后,剩下的 n-1 阶行列式叫做元素 aij 的“余子式”,记作 Mij。把 Aij = (-1)^(i+j) *

Mij 称作元素 aij 的“代数余子式”。 (符号 ^ 表示乘方运算) 首先求出 各代数余子式 A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32 A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31 A13

= (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31 A21 = (-1)^3 * (a12 * a33 - a13 * a32)

= -a12 * a33 + a13 * a32 …… A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21 然后伴随矩阵就是 A11 A21 A31 A12 A22 A32 A13 A23 A33

伴随矩阵=1    -2    -10     1     20     0     1

扩展资料:

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 。

参考资料来源:

百度百科-伴随矩阵

什么是伴随矩阵呢?

指与原矩阵形成映射、类似于逆矩阵。伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 。

相关内容:

当A的秩为n时,A可逆,A*也可逆,故A*的秩为n。

当A的秩为n-1时,根据秩的定义可知,A存在不为0的n-1阶余子式,故A*不等于0,又根据上述公式AA*=0而A的秩小于n-1可知A的任意n-1阶余子式都是0,A*的所有元素都是0,是0矩阵,秩也就是0。

伴随矩阵怎么求

公式:AA*=A*A=|A|E。

1.对于二阶方阵求

伴随矩阵

有一个口诀:主对调,副取反。具体来说就是主对角线元素交换位置,副对角线上的元素取其相反数。这是按伴随矩阵的定义得到的。需要注意的一点是伴随矩阵是代数余子式的转置,转置是这个定义的重点,在计算的时候一定不要忘了。

2、为什么叫伴随矩阵呢,在我的个人理解中,已知一个矩阵A,可见我们能够获得的信息也就只有矩阵A本身携带的信息,于是我们所找到的规律矩阵C也是从矩阵A中得出的。我猜,是因为这样,所以叫作伴随矩阵。

3、伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。由克莱姆法则,到代数余子式和拉普拉斯公式,再到伴随矩阵,大致是这么个路径。很多东西是在矩阵概念出现之前就有了,但名字却是后来再取。

拓展

1、伴随矩阵定义:

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

2、二阶矩阵的求法口诀:主对角线对换,副对角线符号相反。

伴随矩阵是什么?

矩阵A*表示A矩阵的伴随矩阵。

伴随矩阵的定义:某矩阵A各元素的代数余子式,组成一个新的矩阵后再进行一下转置,叫做A的伴随矩阵。

某元素代数余子式就是去掉矩阵中某元素所在行和列元素后的形成矩阵的行列式,再乘上-1的(行数+列数)次方。

伴随矩阵的求发:当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式。

非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。

主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。

四阶矩阵的伴随矩阵怎么求

如果n阶矩阵A可逆,则A的伴随矩阵A*=│A│A^(-1)。如果A不可逆,可以用初等变化行或(列)。

先确定一下A的秩,如果:秩(A)<n-1,则A*=0。如果:秩(A)=n-1,只能知道:(A*)=1,要根据定义来求。

扩展资料:

一个m行n列的矩阵简称为m*n矩阵,特别把一个n*n的矩阵成为n阶正方阵,或者n阶矩阵,此外,行列式的阶数与矩阵类似,但是行列式必然为一个正方阵。

说一个矩阵为n阶矩阵,即默认该矩阵为一个n行n列的正方阵。高等代数中常见的可逆矩阵,对称矩阵等问题都是建立在这种正方阵基础上的。

参考资料来源:百度百科-伴随矩阵

伴随矩阵的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于伴随矩阵是什么、伴随矩阵的信息别忘了在本站进行查找喔。

原文链接:http://www.souke.org/news/show-30346.html,转载和复制请保留此链接。
以上就是关于伴随矩阵 、伴随矩阵是什么全部的内容,关注我们,带您了解更多相关内容。
 
标签: 矩阵 元素 行列式
打赏
 
更多>同类资讯
0相关评论

推荐资讯
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  SITEMAPS  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报