推广 热搜: 收购ACF  石英加热管,  800  T型槽试验平台  求购ACF  深圳回收ACF  回收ACF  T型槽装配平台  求购日立ACF  T型槽地梁 

代数公式 、数学初中公式大全

   日期:2023-04-21     浏览:55    评论:0    
核心提示:关于代数式的所有公式代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子.例如:ax+2b,-2/3等. 代数是研究数字和文字的代数运算理论和方法,更确切的说,

关于代数式的所有公式

代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子.例如:ax+2b,-2/3等.

代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科. 初等代数是更古老的算术的推广和发展.在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数.

代数是由算术演变来的,这是毫无疑问的.至于什么年代产生的代数学这门学科,就很不容易说清楚了.比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧.那么,这种“代数学”是在十六世纪才发展起来的.

如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代.西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖.而在中国,用文字来表达的代数问题出现的就更早了.

“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年.那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》.当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题.

初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上.它的研究方法是高度计算性的.

要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程.所以初等代数的一个重要内容就是代数式.由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式.代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算.通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算.

在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零.这是初等代数的又一重要内容,就是数的概念的扩充.

有了有理数,初等代数能解决的问题就大大的扩充了.但是,有些方程在有理数范围内仍然没有解.于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数.

那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了.这就是代数里的一个著名的定理—代数基本定理.这个定理简单地说就是n次方程有n个根.1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明.

把上面分析过的内容综合起来,组成初等代数的基本内容就是:

三种数——有理数、无理数、复数

三种式——整式、分式、根式

中心内容是方程——整式方程、分式方程、根式方程和方程组.

初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同.比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的…….这些都只是历史上形成的一种编排方法.

初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解.代数运算的特点是只进行有限次的运算.全部初等代数总起来有十条规则.这是学习初等代数需要理解并掌握的要点.

这十条规则是:

五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;

两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;

三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积.

初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程.这时候,代数学已由初等代数向着高等代数的方向发展了.

代数式化简:

代数式化简求值是初中数学教学的一个重点和难点内容.学生在解题时如果找不准解决问题的切入点、方法选取不当,往往事倍功半.如何提高学习效率,顺利渡过难关,笔者就这一问题,进行了归类总结并探讨其解法,供同学们参考.

一. 已知条件不化简,所给代数式化简

二. 已知条件化简,所给代数式不化简

三. 已知条件和所给代数式都要化简

第3课 整式

知识点

代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂.

大纲要求

1、 了解代数式的概念,会列简单的代数式.理解代数式的值的概念,能正确地求出代数式的值;

2、 理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;

3、 掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;

4、 能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;

5、 掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算.

考查重点

1.代数式的有关概念.

(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.

(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.

求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

(3)代数式的分类

2.整式的有关概念

(1)单项式:只含有数与字母的积的代数式叫做单项式.

对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么.

(2)多项式:几个单项式的和,叫做多项式

对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析

(3)多项式的降幂排列与升幂排列

把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列

把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,

给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.

(4)同类项

所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.

要会判断给出的项是否同类项,知道同类项可以合并.即 其中的X可以代表单项式中的字母部分,代表其他式子.

3.整式的运算

(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:

(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉.括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.

(ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.

(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:

多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.

多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.

遇到特殊形式的多项式乘法,还可以直接算:

(3)整式的乘方

单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式.

求代数式的公式

代数部分

一、数与代数

1. 数与式

(1) 实数

实数的性质:

①实数a的相反数是—a,实数a的倒数是 (a≠0);

②实数a的绝对值:

③正数大于0,负数小于0,两个负实数,绝对值大的反而小.

(2)整式与分式

①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 (m、n为正整数);

②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n为正整数,mn);

③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (n为正整数);

④零指数:(a≠0);

⑤负整数指数:(a≠0,n为正整数);

⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即 ;

⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即 ;

分式

①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即 ; ,其中m是不等于零的代数式;

②分式的乘法法则:;

③分式的除法法则:;

④分式的乘方法则:(n为正整数);

⑤同分母分式加减法则:;

⑥异分母分式加减法则:;

2. 方程与不等式

①一元二次方程 (a≠0)的求根公式:

②一元二次方程根的判别式:

叫做一元二次方程 (a≠0)的根的判别式:

方程有两个不相等的实数根;

方程有两个相等的实数根;

方程没有实数根;

③一元二次方程根与系数的关系:设 、 是方程 (a≠0)的两个根,那么 + = ,= ;

不等式的基本性质:

①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;

3. 函数

一次函数的图象:函数y=kx+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线;

一次函数的性质:设y=kx+b(k≠0),则当k0时,y随x的增大而增大;当k0时,y随x的增大而增大;

②当k0,则当x0时或x

初中的所有代数的公式,

初中数学公式大全

1

过两点有且只有一条直线

2

两点之间线段最短

3

同角或等角的补角相等

4

同角或等角的余角相等

5

过一点有且只有一条直线和已知直线垂直

6

直线外一点与直线上各点连接的所有线段中,垂线段最短

7

平行公理

经过直线外一点,有且只有一条直线与这条直线平行

8

如果两条直线都和第三条直线平行,这两条直线也互相平行

9

同位角相等,两直线平行

10

内错角相等,两直线平行

11

同旁内角互补,两直线平行

12

两直线平行,同位角相等

13

两直线平行,内错角相等

14

两直线平行,同旁内角互补

15

定理

三角形两边的和大于第三边

16

推论

三角形两边的差小于第三边

17

三角形内角和定理

三角形三个内角的和等于

180°

18

推论

1

直角三角形的两个锐角互余

19

推论

2

三角形的一个外角等于和它不相邻的两个内角的和

20

推论

3

三角形的一个外角大于任何一个和它不相邻的内角

21

全等三角形的对应边、对应角相等

22

边角边公理

(SAS)

有两边和它们的夹角对应相等的两个三角形全等

23

角边角公理

( ASA)

有两角和它们的夹边对应相等的两个三角形全等

24

推论

(AAS)

有两角和其中一角的对边对应相等的两个三角形全等

25

边边边公理

(SSS)

有三边对应相等的两个三角形全等

26

斜边、直角边公理

(HL)

有斜边和一条直角边对应相等的两个直角三角形全等

27

定理

1

在角的平分线上的点到这个角的两边的距离相等

28

定理

2

到一个角的两边的距离相同的点,在这个角的平分线上

29

角的平分线是到角的两边距离相等的所有点的集合

30

等腰三角形的性质定理

等腰三角形的两个底角相等

(

即等边对等角)

31

推论

1

等腰三角形顶角的平分线平分底边并且垂直于底边

32

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33

推论

3

等边三角形的各角都相等,并且每一个角都等于

60°

34

等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35

推论

1

三个角都相等的三角形是等边三角形

36

推论

2

有一个角等于

60°

的等腰三角形是等边三角形

37

在直角三角形中,如果一个锐角等于

30°

那么它所对的直角边等于斜边的一半

38

直角三角形斜边上的中线等于斜边上的一半

39

定理

线段垂直平分线上的点和这条线段两个端点的距离相等

40

逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42

定理

1

关于某条直线对称的两个图形是全等形

43

定理

2

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44

定理

3

两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45

逆定理

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46

勾股定理

直角三角形两直角边

a

b

的平方和、等于斜边

c

的平方,即

a^2+b^2=c^2

47

勾股定理的逆定理

如果三角形的三边长

a

b

c

有关系

a^2+b^2=c^2

,那么这个三角形是直角三角形

48

定理

四边形的内角和等于

360°

49

四边形的外角和等于

360°

50

多边形内角和定理

n

边形的内角的和等于(

n-2

×

180°

51

推论

任意多边的外角和等于

360°

52

平行四边形性质定理

1

平行四边形的对角相等

53

平行四边形性质定理

2

平行四边形的对边相等

54

推论

夹在两条平行线间的平行线段相等

55

平行四边形性质定理

3

平行四边形的对角线互相平分

56

平行四边形判定定理

1

两组对角分别相等的四边形是平行四边形

57

平行四边形判定定理

2

两组对边分别相等的四边形是平行四边形

58

平行四边形判定定理

3

对角线互相平分的四边形是平行四边形

59

平行四边形判定定理

4

一组对边平行相等的四边形是平行四边形

60

矩形性质定理

1

矩形的四个角都是直角

61

矩形性质定理

2

矩形的对角线相等

62

矩形判定定理

1

有三个角是直角的四边形是矩形

63

矩形判定定理

2

对角线相等的平行四边形是矩形

64

菱形性质定理

1

菱形的四条边都相等

65

菱形性质定理

2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

66

菱形面积

=

对角线乘积的一半,即

S=

b

÷

2

67

菱形判定定理

1

四边都相等的四边形是菱形

68

菱形判定定理

2

对角线互相垂直的平行四边形是菱形

69

正方形性质定理

1

正方形的四个角都是直角,四条边都相等

70

正方形性质定理

2

正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71

定理

1

关于中心对称的两个图形是全等的

72

定理

2

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73

逆定理

如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74

等腰梯形性质定理

等腰梯形在同一底上的两个角相等

75

等腰梯形的两条对角线相等

76

等腰梯形判定定理

在同一底上的两个角相等的梯形是等腰梯形

77

对角线相等的梯形是等腰梯形

78

平行线等分线段定理

如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79

推论

1

经过梯形一腰的中点与底平行的直线,必平分另一腰

80

推论

2

经过三角形一边的中点与另一边平行的直线,必平分第

三边

81

三角形中位线定理

三角形的中位线平行于第三边,并且等于它

的一半

82

梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的

一半

L=

a+b

÷

2 S=L×

h

83 (1)

比例的基本性质

如果

a:b=c:d,

那么

ad=bc

如果

ad=bc,

那么

a:b=c:d

84 (2)

合比性质

如果

a

b=c

d,

那么

(a±

b)

b=(c±

d)

d

85 (3)

等比性质

如果

a

b=c

d=…=m

n(b+d+…+n≠0),

那么

(a+c+…+m)

(b+d+…+n)=a

b

86

平行线分线段成比例定理

三条平行线截两条直线,所得的对应

线段成比例

87

推论

平行于三角形一边的直线截其他两边(或两边的延长线)

,所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS)

95

定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆.

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d<r

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d<r

直线

L

和⊙

O

相切

d=r

直线

L

和⊙

O

相离

d

r

122

切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123

切线的性质定理

圆的切线垂直于经过切点的半径

124

推论

1

经过圆心且垂直于切线的直线必经过切点

125

推论

2

经过切点且垂直于切线的直线必经过圆心

126

切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127

圆的外切四边形的两组对边的和相等

128

弦切角定理

弦切角等于它所夹的弧对的圆周角

129

推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130

相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积

相等

131

推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132

切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133

推论

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134

如果两个圆相切,那么切点一定在连心线上

135

两圆外离

d

R+r

两圆外切

d=R+r

两圆相交

R-r

d

R+r(R

r)

两圆内切

d=R-r(R

r)

两圆内含

d

R-r(R

r)

136

定理

相交两圆的连心线垂直平分两圆的公共弦

137

定理

把圆分成

n(n≥3):

依次连结各分点所得的多边形是这个圆的内接正

n

边形

经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正

n

边形

138

定理

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139

n

边形的每个内角都等于(

n-2

×

180°

n

140

定理

n

边形的半径和边心距把正

n

边形分成

2n

个全等的直角三角形

141

n

边形的面积

Sn=pnrn

2 p

表示正

n

边形的周长

142

正三角形面积

√3a

4 a

表示边长

143

如果在一个顶点周围有

k

个正

n

边形的角,由于这些角的和应为

360°

,因此

(n-2)180°

n=360°

化为(

n-2

(k-2)=4

144

弧长计算公式:

L=n

R

180

145

扇形面积公式:

S

扇形

=n

R^2

360=LR

2

146

内公切线长

= d-(R-r)

外公切线长

= d-(R+r)

147

完全平方公式:

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

148

平方差公式:

(a+b)(a-b)=a^2-b^2

(还有一些,大家帮补充吧)

实用工具

:

常用数学公式

公式分类

公式表达式

乘法与因式分

a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b| |a

-

b|≤|a|+|b| |a|≤b

-

b≤a≤b

|a-

b|≥|a|

-|b| -

|a|≤a≤|a|

一元二次方程的解

-

b+√(b2

-4ac)/2a -b-

√(b2

-4ac)/2a

根与系数的关系

X1+X2=-b/a X1*X2=c/a

注:韦达定理

判别式

b2-4ac=0

注:方程有两个相等的实根

b2-4ac0

注:方程有两个不等的实根

b2-4ac0

抛物线标准方程

y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积

S=c*h

斜棱柱侧面积

S=c'*h

正棱锥侧面积

S=1/2c*h'

正棱台侧面积

S=1/2(c+c')h'

圆台侧面积

S=1/2(c+c')l=pi(R+r)l

球的表面积

S=4pi*r2

圆柱侧面积

S=c*h=2pi*h

圆锥侧面积

S=1/2*c*l=pi*r*l

弧长公式

l=a*r a

是圆心角的弧度数

r 0

扇形面积公式

s=1/2*l*r

锥体体积公式

V=1/3*S*H

圆锥体体积公式

V=1/3*pi*r2h

斜棱柱体积

V=S'L

注:其中

,S'

是直截面面积,

L

是侧棱长

柱体体积公式

V=s*h

圆柱体

V=pi*r2h

求高中数学代数公式

高中数学合集百度网盘下载

链接:

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

代数公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac0 注:方程有两个不等的实根

b2-4ac0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

线性代数公式是什么?

线性代数公式是:(AB)^T=(B^T)(A^T),(AB)^(-1)=[B^(-1)][A^(-1)]。

两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=a^T*b,这里的a^T指示矩阵a的转置。

重要定理

每一个线性空间都有一个基。

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

1、矩阵非奇异(可逆)当且仅当它的行列式不为零。

2、矩阵非奇异当且仅当它代表的线性变换是个自同构。

3、矩阵半正定当且仅当它的每个特征值大于或等于零。

4、矩阵正定当且仅当它的每个特征值都大于零。

5、解线性方程组的克拉默法则。

6、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

代数公式的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数学初中公式大全、代数公式的信息别忘了在本站进行查找喔。

原文链接:http://www.souke.org/news/show-46025.html,转载和复制请保留此链接。
以上就是关于代数公式 、数学初中公式大全全部的内容,关注我们,带您了解更多相关内容。
 
标签: 角形 定理 直线
打赏
 
更多>同类资讯
0相关评论

推荐资讯
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  SITEMAPS  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报